41
dadas do fio aderente, fabricadas em
pistas de protensão, sempre aparecem
tensões de tração na região oposta aos
cabos, junto às extremidades (onde o
momento devido à carga permanente é
diminuto).
De tudo isto resultou a necessidade de
se aceitar a protensão limitada desde o
princípio do concreto pretendido. Foram,
entretanto, tomadas precauções em ex-
cesso. Em pontes ferroviárias, por exem-
plo, não se permitiu a pretensão limitada.
Mesmo para pontes rodoviárias não se
permitiu na NB-116 a protensão limitada
para menos de 50% da carga acidental.
Quando as tensões ultrapassavam
os limites estabelecidos, a protensão
era chamada “moderada” ou “parcial”
(na literatura alemã encontram-se as
denominações “
maessige Vorspannung
”,
“
teilweise V
.” ou ainda “
schwache V
.”). Essa
pretensão não era considerada nos
cálculos. Paul W. Abeles, austríaco de
nascimento mas radicado na Inglaterra,
sugeriu repetidas vezes o uso da preten-
são parcial, encontrando sempre forte
oposição no grupo francês.
No Brasil, o saudoso engenheiro Ro-
berto Rossi Zuccolo, seguindo de perto a
escola francesa de Freyssinet, não aceita-
va, como os europeus em geral, a preten-
são parcial. O Prof. Aderson Moreira da
Rocha, por outro lado, já havia publica-
do na revista “Estrutura nº 38” em 1961,
um artigo onde introduzia o conceito de
“concreto armado pretendido.” O mesmo
engenheiro fez em 1973 uma palestra no
Simpósio de Estruturas no DNER do Rio,
publicada integralmente na revista “Es-
trutura nº 67” com o título “Conceito do
Concreto Armado Pretendido”.
Repudiava à mente humana aceitar o
concreto armado sem qualquer limita-
ção das tensões de tração e recusá-lo no
caso de lhe ser acrescentado um cabo
com uma diminuta pretensão. O brasi-
leiro só começou a aceitar a protensão
parcial depois que o CEB resolveu uni-
ficar o concreto armado e o pretendido
num único “Código Modelo.” Acabaram-
-se as exigências de limitações de ten-
sões, devendo-se em contrapartida dar
muita atenção à fissuração e à deforma-
ção das peças.
O Brasil foi o primeiro país a adotar
numa Norma (a Norma da ABCP de 1937)
o cálculo no Estádio 111, que os alemães
só vieram a oficializar na DIN 1045 em
1972! O Brasil, com o fabuloso acervo
de obras importantes realizadas, pode-
ria ter tomado essa dianteira também
no concreto pretendido, oficializando a
protensão parcial ou o concreto armado
pretendido, como se quiser denominar,
desde a nossa P-NB-116 de 1962. O Brasil
está perdendo a capacidade de inovação
com a “febre” de copiar o que os teóricos
europeus recomendam.
O bom senso, entretanto, prevaleceu e
a pretensão parcial tem tido maior acei-
tação no mundo, principalmente, por
incrível que pareça, na Holanda, Suíça
e Suécia. Os países que têm feito maio-
res objeções são Alemanha, Yugoslávia,
Tchecoslováquia e Índia.
Os impulsos brasileiros devem, entre-
tanto, ser refreados tendo em vista as
conseqüências nocivas da deformação
excessiva e limitação da durabilidade
pela fissuração exagerada.
Quando se fala em protensão limitada
ou em protensão parcial não se imagi-
na aplicar aos cabos tensões de tração
inferiores ao limite permitido. Se assim
fizéssemos, acabaríamos perdendo uma
fração vultosa da protensão pelos fenô-
menos de relaxação e fluência. O aço
deve ser sempre protendido com a má-
xima tensão permitida. O que se diminui
é a área de aço de protensão e, portanto,
a força de protensão aplicada, compen-
sando-se com adição de armadura não
protendida em quantidade adequada.
É sabido que duas peças absoluta-
mente idênticas nos materiais concreto
e aço, diferindo entre si exclusivamente
pela existência de protensão numa de-
las, apresentam praticamente a mesma
carga de ruptura. As perdas de proten-
são ao longo do tempo pouco influen-
ciam, portanto, a resistência à ruptura.
Em serviço, entretanto, a peça não pro-
tendida deve apresentar flecha e grau
de fissuração maiores.
Num ensaio até a ruptura, o aspecto
da peça não protendida é muito diferen-
te da outra, tanto pela quantidade como
pela abertura das fissuras e
pelo valor
da flecha nos vários estágios de carrega-
mento. Ao se definir o estado-limite últi-
mo como sendo aquele correspondente
ao aparecimento de fissuras equivalen-
tes a 10 trincas de abertura 1 mm em 1
m de extensão (E = 10%), verifica-se que
a peça não protendida atinge antes esse
estado-limite.
2 – GRAU DE PROTENSÃO.
PROTENSÃO RELATIVA
Há diversas maneiras de definir o grau
de protensão. A definição deve ser tal
que, para protensão completa, resulte
igual a 1, e para o concreto armado, igual
a O. De preferência, a definição deve dar
imediatamente ao engenheiro a infor-
mação de qual a fração da carga total a
protensão é capaz de absorver: somente
a carga permanente, apenas uma par-
te desta, ou, além dela, mais uma parte
substancial da carga acidental.
Bechmann se serve do momento de
descompressão Mdes para definir o grau
de protensão
k
:
k
= _______
M
des
M
g+q
M
g+q
– é o momento de todas as cargas
externas em serviço.
M
des
– é o momento externo capaz de
anular a máxima tensão de pré-
-compressão no concreto.
Bachmann não esclarece se nas estru-
turas hiperestáticas pretendidas (com
hiperestáticos de protensão) em Mg+q
está incluído o efeito da protensão. Su-
bentende-se que o momento hiperes-
tático (sem considerar a parcela devida
às tensões equilibradas entre concreto
e aço) deva ser considerado com o valor
final da protensão. Supõe-se também
que o momento de descompressão seja
determinado após todas as perdas pro-
gressivas.
Brendum-Nielsen define praticamente
do mesmo modo o grau de protensão,
considerando, porém, o Mdes correspon-
dente à descompressão na posição do
cabo resultante, desprezando as peque-
nas tensões de tração que aparecem na
região do cabrimento do cabo. Explícita,
entretanto, a inclusão do momento hipe-
restático de protensão no denominador.
É escolhido, entretanto, outro nome para
essa relação de momentos: protensão
relativa.
Thürlimann (e conseqüentemente a
F.I.P., influenciada por ele) prefere definir
o grau de protensão de maneira inde-
pendente do carregamento, como um ca-
racterístico geométrico e físico da seção
transversal. Tem sido utilizada a notação
À definida pela fórmula:
l
= _____________________
A
p
• f
pvk
A
p
• f
pyk
+A
s
• f
sk